46 research outputs found

    The CFHTLS Deep Catalog of Interacting Galaxies I. Merger Rate Evolution to z=1.2

    Get PDF
    We present the rest-frame optical galaxy merger fraction between 0.2<z<1.2, as a function of stellar mass and optical luminosity, as observed by the Canada-France-Hawaii Telescope Legacy Deep Survey (CFHTLS-Deep). We developed a new classification scheme to identify major galaxy-galaxy mergers based on the presence of tidal tails and bridges. These morphological features are signposts of recent and ongoing merger activity. Through the visual classification of all galaxies, down to i_vega<22.2 (~27,000 galaxies) over 2 square degrees, we have compiled the CFHTLS Deep Catalog of Interacting Galaxies, with ~1600 merging galaxies. We find the merger fraction to be 4.3% +/-0.3% at z~0.3 and 19.0% +/-2.5% at z~1, implying evolution of the merger fraction going as (1+z)^m, with m=2.25 +/-0.24. This result is inconsistent with a mild or non-evolving (m4sigma level of confidence. A mild trend, where massive galaxies with M>10^10.7 M_sun are undergoing fewer mergers than less massive systems M~10^10 M_sun), consistent with the expectations of galaxy assembly downsizing is observed. Our results also show that interacting galaxies have on average SFRs double that found in non-interacting field galaxies. We conclude that (1) the optical galaxy merger fraction does evolve with redshift, (2) the merger fraction depends mildly on stellar mass, with lower mass galaxies having higher merger fractions at z<1, and (3) star formation is triggered at all phases of a merger, with larger enhancements at later stages, consistent with N-body simulations.Comment: e.g.: 17 pages, 14 figures, accepted for publication in Ap

    The Space Density Evolution of Wet and Dry Mergers in the Canada-France-Hawaii Telescope Legacy Survey

    Get PDF
    We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in Bridge et al. (2010). By analyzing the internal colors of these systems, we show that so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z ∼ 0.7, although the wet and dry populations have different evolutionary trends. At higher redshifts dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M_(stellar) > 10^(11)M☉) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually-assumed merging timescale of ∼ 0.5–1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate mass ellipticals are 10–100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early-types, even if incorrect for the most massive ones

    A Close-pair Analysis of Damp Mergers at Intermediate Redshifts

    Get PDF
    We have studied the kinematics of ~2800 candidate close-pair galaxies at 0.1 < z < 1.2 identified from the Canada-France-Hawaii Telescope Legacy Survey fields. Spectra of these systems were obtained using spectrometers on the 6.5 m Magellan and 5 m Hale telescopes. These data allow us to constrain the rate of dry mergers at intermediate redshifts and to test the "hot halo" model for quenching of star formation. Using virial radii estimated from the correlation between dynamical and stellar masses published by Leauthaud et al., we find that around 1/5 of our candidate pairs are likely to share a common dark matter halo (our metric for close physical association). These pairs are divided into red-red, blue-red, and blue-blue systems using the rest-frame colors classification method introduced in Chou et al.. Galaxies classified as red in our sample have very low star formation rates, but they need not be totally quiescent, and hence we refer to them as "damp," rather than "dry," systems. After correcting for known selection effects, the fraction of blue-blue pairs is significantly greater than that of red-red and blue-red pairs. Red-red pairs are almost entirely absent from our sample, suggesting that damp mergers are rare at z ~ 0.5. Our data support models with a short merging timescale (<0.5 Gyr) in which star formation is enhanced in the early phase of mergers, but quenched in the late phase. Hot halo models may explain this behavior, but only if virial shocks that heat gas are inefficient until major mergers are nearly complete

    The Space Density Evolution of Wet and Dry Mergers in the Canada-France-Hawaii Telescope Legacy Survey

    Get PDF
    We analyze 1298 merging galaxies with redshifts up to z=0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in Bridge et al. (2010). By analyzing the internal colors of these systems, we show that so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially dentical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z ~ 0.7, although the wet and dry populations have different evolutionary trends. At higher redshifts dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M_stellar > 10^11 M_solar) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually-assumed merging timescale of ~ 0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate mass ellipticals are 10 --100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early-types, even if incorrect for the most massive ones.Comment: 10 pages, 8 figures. Accepted by A

    Interferometric Follow-Up of WISE Hyper-Luminous Hot, Dust-Obscured Galaxies

    Get PDF
    WISE has discovered an extraordinary population of hyper-luminous dusty galaxies which are faint in the two bluer passbands (3.4 μ3.4\, \mum and 4.6 μ4.6\, \mum) but are bright in the two redder passbands of WISE (12 μ12\, \mum and 22 μ22\, \mum). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the CARMA and SMA interferometer arrays at submm/mm wavelengths. We report continuum detections at ∼\sim 1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1-2 arcsec and are consistent with single point sources. We estimate the masses of cold dust are 2.0×108M⊙\times 10^{8} M_{\odot} for W0149+2350 and 3.9×108M⊙\times 10^{8} M_{\odot} for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ\sigma upper limits to the molecular gas masses traced by CO, which are 3.3×1010M⊙\times 10^{10} M_{\odot} and 2.3×1010M⊙\times 10^{10} M_{\odot} for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.Comment: 13 pages, 3 figures. ApJ in pres

    Submillimetre observations of WISE-selected high-redshift, luminous, dusty galaxies

    Get PDF
    We present SCUBA-2 850um submillimetre (submm) observations of the fields of 10 dusty, luminous galaxies at z ~ 1.7 - 4.6, detected at 12um and/or 22um by the WISE all-sky survey, but faint or undetected at 3.4um and 4.6um; dubbed hot, dust-obscured galaxies (Hot DOGs). The six detected targets all have total infrared luminosities greater than 10^13 L_sun, with one greater than 10^14 L_sun. Their spectral energy distributions (SEDs) are very blue from mid-infrared to submm wavelengths and not well fitted by standard AGN SED templates, without adding extra dust extinction to fit the WISE 3.4um and 4.6um data. The SCUBA-2 850um observations confirm that the Hot DOGs have less cold and/or more warm dust emission than standard AGN templates, and limit an underlying extended spiral or ULIRG-type galaxy to contribute less than about 2% or 55% of the typical total Hot DOG IR luminosity, respectively. The two most distant and luminous targets have similar observed submm to mid-infrared ratios to the rest, and thus appear to have even hotter SEDs. The number of serendipitous submm galaxies (SMGs) detected in the 1.5-arcmin-radius SCUBA-2 850um maps indicates there is a significant over-density of serendipitous sources around Hot DOGs. These submm observations confirm that the WISE-selected ultra-luminous galaxies have very blue mid-infrared to submm SEDs, suggesting that they contain very powerful AGN, and are apparently located in unusual arcmin-scale overdensities of very luminous dusty galaxies.Comment: 12 pages, 8 figures, 3 tables, accepted for publication in MNRA

    The Most Luminous Galaxies Discovered by WISE

    Get PDF
    We present 20 Wide-field Infrared Survey Explorer (WISE)-selected galaxies with bolometric luminosities L_(bol) > 10^(14) L☉, including five with infrared luminosities L_(IR) ≡ L_((rest 8–1000 μm)) > 10^(14) L☉. These "extremely luminous infrared galaxies," or ELIRGs, were discovered using the "W1W2-dropout" selection criteria which requires marginal or non-detections at 3.4 and 4.6 μm (W1 and W2, respectively) but strong detections at 12 and 22 μm in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4–10 μm, suggesting that hot dust with T_d ~ 450 K is responsible for the high luminosities. These galaxies are likely powered by highly obscured active galactic nuclei (AGNs), and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L_(bol) level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 μm luminosities of the WISE-selected ELIRGs can be 30%–80% higher than that of the unobscured quasars. The existence of AGNs with L_(bol) > 10^(14) L☉ at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ~10^3 M☉, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy

    A New Population of High-z, Dusty Lyα Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    Get PDF
    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 ≾ z ≾ 4.6 dusty Lyα emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Lyα "blobs" (LABs). The objects have a surface density of only ~0.1 deg^(–2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L IR ≳ 10^(13)-10^(14) L_☉) and have warm colors. They are typically more luminous and warmer than other dusty, z ~ 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Lyα, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy
    corecore